開始日期: 2024-06-29
課時(shí)安排: 7周在線小組科研學(xué)習(xí)+5周不限時(shí)論文指導(dǎo)學(xué)習(xí)
適合人群
適合年級 (Grade): 大學(xué)生及以上
適合專業(yè) (Major): 對機(jī)械工程、流體力學(xué)、數(shù)值模擬與分析、車輛工程、航空航天工程等相關(guān)專業(yè)感興趣的學(xué)生。
學(xué)生需要具備多元微積分和線性代數(shù)基礎(chǔ), 以及Python基礎(chǔ)。
導(dǎo)師介紹
Shlomo
卡內(nèi)基梅隆大學(xué) (CMU)終身正教授
Shlomo教授任卡內(nèi)基梅隆大學(xué)(CMU)終身正教授,他曾在魏茨曼科學(xué)研究所(Weizmann Institute of Science)攻讀博士學(xué)位。之后移居美國,并在位于美國宇航局蘭利研究中心的ICASE(科學(xué)與工程計(jì)算機(jī)應(yīng)用研究所)工作。教授從1994年任職于卡內(nèi)基梅隆大學(xué),研究方向包括解決流體動(dòng)力學(xué)方程和處理大規(guī)模優(yōu)化的相關(guān)問題。
Professor Shlomo worked at ICASE (Institute for Computer Application in Science and Engineering), which was at NASA Langley Research Center. The instructor was a senior scientist at the Weizmann Institute for a few years. From 1994, Shlomo became a Professor at Carnegie Mellon University. His research interests include solving fluid dynamics equations and dealing with large-scale optimization related problems.
任職學(xué)校
卡內(nèi)基梅隆大學(xué)(CMU)始建于1900年,是世界范圍內(nèi)頗負(fù)盛名的私立研究型大學(xué),擁有世界歷史最悠久的計(jì)算機(jī)學(xué)院之一,在2020年QS世界大學(xué)計(jì)算機(jī)科學(xué)排名中位列第3,2020年U.S.News計(jì)算機(jī)科學(xué)美國排名第二位?!敖刂?019年3月,學(xué)校的教員和校友中共有20人獲得諾貝爾獎(jiǎng),13人獲得圖靈獎(jiǎng),22人獲評美國藝術(shù)與科學(xué)院院士,19人進(jìn)入美國科學(xué)促進(jìn)會,72人入選美國國家學(xué)院?!?
項(xiàng)目背景
超臨界翼型于1967年由NASA蘭利研究中心的惠特科姆博士提出,它是一種適用于高亞聲速飛機(jī)的中等厚度翼型,它同時(shí)具備優(yōu)異的高速特性和良好的低速特性。與高速普通翼型相比,超臨界翼型能夠把阻力發(fā)散馬赫數(shù)提高大約0.05-0.12,或者把翼型的最大相對厚度提高2%-5%。 隨后流體力學(xué)在機(jī)械工程、化學(xué)工程、土木工程、生物工程、環(huán)境工程、航空航天工程、海洋工程、石油工程、能源工程領(lǐng)域中的應(yīng)用受到了人們的廣泛關(guān)注,也成為了解決全球變暖、淡水供應(yīng)和新能源問題的幕后功臣,被各國政府列入可持續(xù)發(fā)展白皮書。近年來,特別是由于流體力學(xué)和數(shù)理分析的融合,流體工程得到了快速地發(fā)展,在汽車制造領(lǐng)域,借助流體力學(xué)可以優(yōu)化車身的設(shè)計(jì),降低車身的空氣阻力,提高燃油的經(jīng)濟(jì)性,在航空航天領(lǐng)域,指導(dǎo)機(jī)翼的設(shè)計(jì)等。The supercritical airfoil was proposed in 1967 by Dr. Whitcomb at NASA Langley Research Center as a medium-thickness airfoil for high subsonic aircraft that has both excellent high-speed characteristics and good low-speed characteristics. The supercritical airfoil is capable of increasing the drag divergence Mach number by approximately 0.05-0.12, or increasing the maximum relative thickness of the airfoil by 2%-5%, compared to a high-speed normal airfoil. Subsequently, the application of fluid mechanics in the fields of mechanical engineering, chemical engineering, civil engineering, biological engineering, environmental engineering, aerospace engineering, marine engineering, petroleum engineering, and energy engineering has received widespread attention, and has also become a behind-the-scenes solution to the problems of global warming, fresh water supply, and new energy sources, and has been included in the white paper on sustainable development by various governments. In recent years, especially due to the integration of fluid mechanics and mathematical analysis, fluid engineering has been developed rapidly. In the field of automobile manufacturing, with the help of fluid mechanics, the design of the body can be optimized to reduce the air resistance of the body and improve the fuel economy, and in the field of aerospace, the design of the wing is guided, etc.
項(xiàng)目介紹
本項(xiàng)目將采用流體動(dòng)力學(xué)通用的積分和微分方程討論流體動(dòng)力學(xué)中的經(jīng)典問題,而后項(xiàng)目將逐步深入并著重于在可壓縮及不可壓縮情況,時(shí)間無關(guān)問題方程的分別對應(yīng)的數(shù)值解,分析勢方程的守恒形式及邊界條件,小擾動(dòng)近似理論,跨聲速流,超音速離散化及邊界條件。學(xué)生將在導(dǎo)師的指導(dǎo)下以科學(xué)的方法記錄并且分析研究結(jié)果,在項(xiàng)目結(jié)束時(shí)提交項(xiàng)目報(bào)告,進(jìn)行成果展示。
個(gè)性化研究課題參考:
航天飛機(jī)跨聲速機(jī)翼繞流氣動(dòng)特性分析
流體力學(xué)指引下的汽車空氣阻力探究及車型設(shè)計(jì)原理
氣固流化床內(nèi)兩相流動(dòng)特性的數(shù)值模擬及結(jié)構(gòu)優(yōu)化設(shè)計(jì)
流體力學(xué)補(bǔ)償標(biāo)準(zhǔn)伽遼金有限元及其在建筑風(fēng)場中的應(yīng)用
This project will use the general integral and differential equations of fluid dynamics to discuss classic problems in fluid dynamics. Then the project will gradually deepen and focus on the corresponding numerical solutions of the time-independent problem equations in the compressible and incompressible situations, analysis of the conservation form and boundary conditions of the potential equation, small disturbance approximation theory, transonic flow, supersonic discretization And boundary conditions. Under the guidance of the instructor, students will record and analyze the research results in a scientific way, submit a project report at the end of the project, and display the results.
Suggested Future Research Fields:
Analysis of aerodynamic characteristics of space shuttle transonic wing flow around
Research on automobile air resistance and car model design principles under the guidance of fluid mechanics
Numerical simulation and structural optimization design of two-phase flow characteristics in a gas-solid fluidized bed
Galerkin finite element standard for fluid mechanics compensation and its application in building wind farms
項(xiàng)目大綱
流體動(dòng)力學(xué)基本方程 The basic equations of fluid dynamics
勢方程的守恒形式及邊界條件,小擾動(dòng)近似理論(SDA) Conservation form of the potential equation. Boundary conditions and small disturbance approximation (SDA)
亞音速勢方程與邊界條件的離散化及其SDA簡化模型 Discretization of the subsonic potential equation and boundary conditions. Simplified models using SDA
跨聲速流 Transonic flows
超音速離散化及邊界條件 Discretization of the supersonic case. Boundary conditions
項(xiàng)目回顧與成果展示 Program review and presentation
論文輔導(dǎo) Project deliverable tutoring
項(xiàng)目收獲
7周在線小組科研學(xué)習(xí)+5周不限時(shí)論文指導(dǎo)學(xué)習(xí) 共125課時(shí)
項(xiàng)目報(bào)告
優(yōu)秀學(xué)員獲主導(dǎo)師Reference Letter
EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等級別索引國際會議全文投遞與發(fā)表指導(dǎo)(可用于申請)
結(jié)業(yè)證書
成績單
留學(xué)也是一種投資,你的留學(xué)預(yù)算充足嗎,簡單3步,輕松了解留學(xué)預(yù)算?
費(fèi)用計(jì)算
版權(quán)及免責(zé)聲明:
1、如轉(zhuǎn)載本網(wǎng)原創(chuàng)文章,請務(wù)必注明出處:寰興留學(xué)(www.gudt.cn);
2、本網(wǎng)轉(zhuǎn)載媒體稿件、圖片旨在傳播更多有益信息,并不代表同意該觀點(diǎn),本網(wǎng)不承擔(dān)稿件侵權(quán)行為的連帶責(zé)任;如轉(zhuǎn)載稿、圖片涉及版權(quán)等問題,請作者在兩周內(nèi)速來電或來函聯(lián)系,我們將立即刪除。